Your vision system monitoring your production quality is finally validated and running 24/7, with the PQ behind you it’s time to relax. Or so you thought! It’s important that vision systems are not simply consigned to maintenance without an understanding of the potential automated inspection errors and what to look out for once your machine vision system is installed and running. These are three immediate ways to minimise inspection errors in your medical device, pharma or life science vision inspection solution.
1. Vision system light monitor.
As part of the installation of the vision system, most modern machine vision solutions in medical device manufacturing will have light controllers and the ability to compensate for any changes in the light degradation over time. Fading is a slow process but needs to be monitored. LEDs are made up of various materials such as semiconductors, substrates, encapsulants, and connectors. Over time, these materials can degrade, leading to reduced light output and colour shift. It’s important in a validated solution to understand these issues and have either an automated approach to the changing light condition through close loop control of grey level monitoring, or a manual assessment on a regular interval. It’s something to definitely keep an eye on.
2. Calibration pieces.
For a vision machines preforming automated metrology inspection the calibration is an important aspect. The calibration process will have been defined as part of the validation and production plan. Typically the calibration of a vision system will normally in the form of a calibrated slide with graticules, a datum sphere or a machined piece with traceability certification. Following from this would have been the MSA Type 1 Gauge Studies, this the starting point prior to a G R&R to determine the difference between an average set of measurements and a reference value (bias) of the vision system. Finally the system would be validated with the a Gauge R&R, which is an industry-standard methodology used to investigate the repeatability and reproducibility of the measurement system. So following this the calibration piece will be a critical part of the automated inspection calibration process. It’s important to store the calibration piece carefully, use it as determined from the validation process and keep it clean and free from debris. Make sure your calibration pieces are protected.
3. Preventative maintenance.
Vision system preventative maintenance is essential in the manufacturing of medical devices because it helps to ensure that the vision systems performs effectively over the intended lifespan. Medical devices are used to diagnose, treat, and monitor patients, and they play an important part in the delivery of healthcare. If these devices fail, malfunction, or are not properly calibrated, substantial consequences can occur, including patient damage, higher healthcare costs, and legal culpability for the manufacturer. Therefore, any automated machine vision system which is making a call on the quality of the product (at speed), must be maintained and checked regularly. Preventative maintenance of the vision systems involves inspecting, testing, cleaning, and calibrating the system on a regular basis, as well as replacing old or damaged parts.
Medical device makers benefit from implementing a preventative maintenance for the vision system in the following ways –
Continued reliability: Regular maintenance of the machine vision system can help identify and address potential issues before they become serious problems, reducing the risk of device failure and increasing device reliability.
Extend operational lifespan: Regular maintenance can help extend the lifespan of the vision system, reducing the need for costly repairs and replacements.
Ensure regulatory compliance: Medical device manufacturers are required to comply with strict regulatory standards (FDS, GAMP, ISPE) and regular maintenance is an important part of meeting these standards.
These three steps will ultimately help to lessen the exposure of the manufacture to production faults, and stop errors being introduced into the medical devices vision system production process. By reducing errors in the machine vision system the manufacturer can keep production running smoothly, increase yield and reduce downtime.