You’re starting a new automation project, and vision inspection is a critical part of the production process. How do you allow for validation of the vision inspection systems and the machine vision hardware and software? This is a question we hear a lot, and in this post we’re going to drill down on the elements of validation in the context of vision systems for the medical devices and pharmaceutical industries. We’ll attempt to answer the questions by providing an overview of GAMP, a guide to key terminology and offering advice on implementing validation for your vision system and machine vision applications.
You’ll hear a lot of terminology and acronyms in industrial automation validation. So we’ll start by explaining some of the terms before drilling down on how the validation process works.
So what is GAMP? Good Automated Manufacturing Practice is abbreviated as “GAMP.” It’s a methodology for generating high-quality machinery based on a life cycle model and the concept of prospective validation. It was developed to serve the needs of the pharmaceutical industry’s suppliers and consumers and is part of any automation project. The current version of GAMP is GAMP 5. The full title is “A Risk-Based Approach to Compliant GxP Computerized Systems”.
The GAMP good practices were developed to meet the Food and Drug Administration’s (FDA) and other regulatory authorities’ (RAs’) rising requirements for computerised system compliance and validation in the industrial automation industry, and they are now employed globally by regulated enterprises and their suppliers.
GAMP was developed by experts in the pharmaceutical manufacturing sector, to aid in the reduction of grey areas in the interpretation of regulatory standards, leading to greater conformity, higher quality, more efficiency, and lower production costs. They tend to be methodological in nature, which in the context of machine vision matches the processes of industrial image processing.
So in layman’s terms, the GAMP and FDA validation is designed to prove the performance of a system in the fundamentals of what it is designed for and lays down the parameters and testing procedures to validate the process across the design, build, commissioning, test and production processes. In machine vision for industrial automation, this will be heavily biased towards the hardware and software specifications, along with the performance criteria for the vision system.
What is GxP that GAMP refers to? Simply, this refers to good practice, with the x in the middle referring to “various fields”. It refers to a set of guidelines and regulations that are followed in industries that produce pharmaceuticals, medical devices, and other products that have a direct impact on the health and well-being of people.
GxP guidelines and regulations are designed to ensure the quality, safety, and efficacy of medical device and pharma products. They cover various aspects of product development, manufacturing, testing, and distribution, as well as the training, qualifications, and conduct of the personnel involved in these processes.
GxP guidelines and regulations are enforced by regulatory agencies, such as the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA), and non-compliance with these guidelines can result in fines, product recalls, and other legal consequences.
There are several different types of GxP, including:
- GMP (Good Manufacturing Practice): This set of guidelines and regulations covers the manufacturing and testing of pharmaceuticals, medical devices, and other products. This is the most relevant to the validation of vision systems, inspection and machine vision in industrial automation.
- GCP (Good Clinical Practice): This set of guidelines and regulations covers the conduct of clinical trials involving human subjects.
- GLP (Good Laboratory Practice): This set of guidelines and regulations covers the conduct of laboratory studies involving the testing of chemicals, drugs, and other substances.
- GPP (Good Pharmacy Practice): This set of guidelines and regulations covers the practice of pharmacy, including the dispensing and distribution of drugs and other products.
By following GxP guidelines and regulations and validation processes, companies can ensure that their products meet the highest standards of quality, safety, and efficacy, and that they are manufactured, tested, and distributed in a way that protects the health and well-being of their customers.
What is the ISPE? This is the “International Society for Pharmaceutical Engineering”. ISPE is an organisation that bridges pharmaceutical knowledge to improve the development, production, and distribution of high-quality medicines for patients around the world through such means as innovation in manufacturing and supply chain management, operational excellence, and insights into regulatory matters. The ISPE develops the GAMP framework, and GAMP 5 was developed by the ISPE GAMP Community of Practice (CoP).
So the above sets out the framework for validation and why it exists. We’ll now look at what processes are needed to fully validate a vision system into medical device and pharmaceutical manufacturing. On a high level the following critical steps are followed when validating a vision system in production:
1. Define the validation plan: This includes identifying the scope of the validation, the criteria that will be used to evaluate the system, and the testing that will be done to ensure that the system meets these criteria.
2. Install and configure the system: This includes setting up the hardware and software necessary for the system to function correctly, as well as configuring the system to meet the specific needs of the production process.
3. Test the system: This includes conducting functional tests to ensure that the system performs as intended, as well as performance and reliability tests to ensure that the system is accurate and reliable.
4. Validate the system: This includes verifying that the system meets all relevant regulatory standards and requirements, as well as any internal quality standards or guidelines.
5. Document the validation process: This includes documenting the testing that was done, the results of the tests, and any issues that were identified and corrected during the validation process.
6. Implement the system: This includes training production staff on how to use the system and integrating the system into the production process.
7. Monitor and maintain the system: This includes ongoing monitoring and maintenance of the system to ensure that it continues to function correctly and meets all relevant standards and requirements.
But each step needs to be broken down and understood in the context of the validation process relating to GAMP. The following lifecycle shows the typical steps required for the validation of the vision system in production.
What is a URS? A URS, or User Requirement Specification, is a document that outlines the requirements for a product, system, or service. It is typically created at the beginning of a project, and it serves as a roadmap for the development team, providing guidance on what the final product should look like and how it should function.
A URS typically includes a detailed description of the product’s intended use and user base, as well as the specific requirements that the product must meet in order to be successful. These requirements may include functional requirements (e.g., what the product should be able to do), performance requirements (e.g., how fast or accurately the product should operate), and quality requirements (e.g., how reliable or durable the product should be).
The URS is an important tool for defining and communicating the project’s scope and objectives, and it is often used as a reference document throughout the development process. It is typically reviewed and approved by stakeholders, including the development team, customers, and regulatory agencies, before the project begins.
In addition to serving as a guide for the development team, the URS can also be used to evaluate the final product to ensure that it meets all of the specified requirements. This process is known as “verification,” and it is an important step in the quality control process to ensure that the product is fit for its intended use.
The URS is the first document that is required for validation of the vision system (or other industrial automation system), it’s the base document which then leads on the FDS (Functional Design Specification) and the HDS (Hardware Design Specification) and the SDS (Software Design Specification) incorporated as part of that specification. These documents are typically provided by the vision system company as part of the scope of supply of a fully validated vision inspection solution.
What is an FDS? A Functional Design Specification (FDS) is a document that outlines the functional requirements of a product, system, or service. It describes the specific behaviors and capabilities that the machine vision inspection system should have in order to fulfill its intended purpose. The FDS typically includes a detailed description of the vision systems functional requirements, as well as any technical constraints or requirements that must be considered during the design and development of the inspection process.
The purpose of an FDS is to provide a clear and comprehensive understanding of the functional requirements of the overall inspection system, and to serve as a reference for the design and development team as you bring the product to life. It is an important tool for ensuring that the final vision system meets the needs and expectations of the end users.
An FDS may also include information on the vision user interface design, user experience design, and any other aspects of the product that are relevant to its functional requirements. It is typically developed early in the design process and is used to guide the development of the product throughout the project.
Prior to installation, the manufacturer will undertake a Factory Acceptance Test (FAT) which should be documented and agreed between the vision system supplier and the customer.
As the project progresses the applications team need to think about the three major milestones for test, commissioning and integration of the validated vision system – these include:
Installation Qualification (IQ) – this is the process used to verify that the vision system, equipment has been installed correctly and meets all relevant specifications and requirements. It is an important step in the validation process for ensuring that an inspection system is ready for use in a production environment.
During an IQ, a series of tests and checks are performed to ensure that the machine vision system has been installed properly and is functioning correctly. This may include verifying that all required components are present and properly connected, checking that all necessary documentation is complete and accurate, and verifying that the system or equipment meets all relevant safety and performance standards.
The purpose of IQ is to ensure that the vision system is ready for use and meets all necessary requirements before it is put into operation. It is typically performed by a team of qualified professionals from the customers side, and the results of the IQ are documented in a report that can be used to demonstrate that the system or equipment has been installed correctly and is ready for use.
Operational Qualification (OQ) – This is the process used to verify that the vision system complies with the URS and FDS. During an OQ, a series of tests and checks are performed to ensure that the system or equipment operates correctly and consistently under normal operating conditions. This may include verifying that the system or equipment performs all of its required functions correctly, that it operates within specified parameters, and that it is capable of handling normal production volumes.
Performance Qualification (PQ) – This is the final step and is performed by the final user of the vision system. It verifies the operation of the system under full operational conditions. It generally produces production batches using either a placebo or live product, dependent on the final device requirements.
All aspects of the validation approach are captured in the Validation Plan (VP), which, combined with the Requirement Traceability Matrix (RTM) remains live during the project’s life to track all documents and ensure compliance with the relevant standards and traceability of documentation.
Only after the completion of the Performance Qualification is the system validated, and ready for production use.
In summary. The process of validating a vision inspection system in an industrial automation system involves several steps to ensure that the system is accurate, reliable, and meets the specified requirements. These steps can be broadly divided into three categories: planning, execution, and evaluation.
Planning: Before beginning the validation process, it is important to carefully plan and prepare for the testing. This includes defining the scope of the validation, identifying the personnel who will be involved, and establishing the criteria that will be used to evaluate the system’s performance. It may also involve obtaining necessary approvals and documents, such as a validation plan or protocol.
Execution: During the execution phase, the vision inspection system is tested under a variety of conditions to ensure that it is functioning properly. This may include testing with different types of objects, lighting conditions, and image resolutions to simulate the range of conditions that the system will encounter in real-world use. The system’s performance is then evaluated using the criteria established in the planning phase.
Evaluation: After the testing is complete, the results of the validation process are analyzed and evaluated. This may involve comparing the vision system’s performance to the specified requirements and determining whether the system can meet those requirements. If the system fails to meet the requirements, it may be necessary to make modifications or adjustments to the system to improve its performance.
Throughout the validation process, it is important to maintain thorough documentation of all testing and evaluation activities according to GAMP 5 regulations. This documentation can be used to demonstrate the system’s performance to regulatory agencies or other stakeholders, and it can also be used as a reference for future maintenance or upgrades.
The process of validating a vision inspection system in an industrial automation system is a crucial step in ensuring that the system is accurate, reliable, and meets the specified requirements. By following a structured and thorough validation process, companies can ensure that their vision inspection systems are fit for their intended use and can help to improve the efficiency and quality of their operations.